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OF ELASTICITY 

KERNELS 

An approximate method is proposed for solving linear integral equations with kernels 

dependent on the difference of the arguments (difference kernels), on the sum of the 

arguments (summation kernels), as well as with kernels representing the superposition of 
those mentioned (difference-summation kernels). The case of one and two finite inter- 

vals, as well as semi-infinite and infinite intervals, is examined. The approximate method 

proposed is based on reduction of the mentioned integral equations to infinite systems of 

algebraic equations. In conclusion, a number of problems of the theory of elasticity are 
mentioned to which the proposed method of solving integral equations can be applied, 
are indicated. 

1. Finite interval. Let us examine the integral equation 

under the assumptions that 

k(x) = k(- x), \,k(x),Vx=K2< 00 
o* 

(1 .I) 

(1.2) 

and that h is not an eigennumber. 

The interval (-1, 1) has been selected to shorten the writing. No generality is hence 
lost since any finite interval can be reduced to that mentioned by a substitution without 

altering the properties of the kernel in (1.2). 
The substance of the method elucidated as applied to the case of a finite interval is 

to represent the kernel function k (x) as a series in an orthonormal system of the form 

c,+(z) = 2-‘/s, c,+(x)= COS(??Wx/2) m=i, 2,3,... (4.3) 
co 2 

k(x) = 2 w&+(x) 0~2~2, a, = ‘k(x)C,+(x)dx s 
m=o 0 

with a subsequent examination of the even ‘p+ (z) and odd cp_ (x) solutions of Eq. (1.1). 

Representing the right side as the sum of even and odd functions, e. i. f = fi + f_, 
we establish from (1.1) 1 

‘p* (x) + h j K* (5, Y) ‘p* (Y) &Y = f* (2) (Odz<i) (1.4) 

Q (~3 Y) = k (x - Y) + k (x + Y) (1.5) 

Utilizing (1.3). we obtain the following bilinear expansions for these kernels 

K* (5, Y) = 2 5 a&f (t) Cf (y), C,(x) = $i* m+ (l-6) 
m=o 

Substituting (1.6) into (1.4) results in the following formulas for their solutions 

575 
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cp+- (4 = f+ (4 - 2% 5 
I 

amC*m(x) q& ) qd& = s ‘c+,(z)cF’* (z)dc (1.7) 
77-O 0 

The coefficients cpz should hence be found from the infinite systems 

&+h: 

1 

, a,,&:,,@, = f’n (n = o, i, 2, . .), fn* = j C’, (4 f (5) dz (1.8) 
m=o 

b$,, = 2 \ c+, (x) C’,(x) dx = b,_, -& b,,,, b, = 2 si;kkrr/2 (1.9) 
0 

Let us turn to an investigation of the infinite systems obtained. Applying the method 

of proof of complete regularity which is expounded in section 1 of [1], the following 

complete regularity condition can be established for the infinite systems (1.8) : 

JmK<’ -E p= i;,k(x),2dZ= 5 la,12) (1 .lO) 
; m=o 

where E is a fixed small number. 

Let us now show that the systems (1.8) are quasi-completely regular for any h if the 
following asymptotic expression holds : 

am = 0(1 lm), rn+m (1.11) 

It must be shown that 

lim S, = 0, 
Tl-+oo 

In conformity with (1.9) we have 

8, < &&’ + .sn-r 

S,= 2 lad&l 
m=o 

S’n+= 5 Io,Ilb,*,I 
m=o 

(1.12) 

(1.13) 

Let us first estimate IS,-. To do this we make the substitution m - n = k and 

represent S,- as CC 

s,- :z Sri(l) + S,(Z), S.,,(l) = 2 1 %+k 1 1 bk 1, Sn@) = jj la, 1 IL, 1 (1.14) 
lC= m=o 

Let us choose IZ > No, whereN,is so large a fixed number that in conformity with 
(1.11) 

1 a, 1 < Am-’ (m>No, A>O) 
Then 

No--l No--l 71-1 

&,t2) 6 2 I a, 1) bn-m I - $ (,zl m tni_ mJ - s,(3,) 7 
S,(3) = 2 I 

m=o 
m=lm(n--m) 

Finally, utilizing the identity and the asymptotic relationship @] 

1 1 1 
=- 

m (n --n) n i 
;;;+&.& jl+=o(lnn). n-+.w 

we conclude that S’,“’ = 0 (n-l In n) , and therefore 

Sri(s) = O(n-llnn), n-+ 00 

To estimate the sum S’,” , we again select n > No; then 

(1.15) 
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Now, if the known relationships @3 are taken into account 

i&~,,)~~,,) = q(q+*;I;(p+*) 3 
+(z)=~(lnz), z-+00 (1.16) 

for the Euler $-function, then we perceive that 

&(l) = 0 (6 Inn), n .+ M 

Analogous resonong shows that such an asymptotics holds for S,” also, and therefore, 

by virtue of (1.15),(1.14) and (1.13) that (1.12) holds,i.e. the systems (1.8) are quasi- 

completely regular. 
Now, in place of (1.11) let there be the more general asymptotic relation 

am = 0 (m-y, m-+00, a>0 (1.17) 

In order to obtain a quasi-complete regular infinite system, the new unknowns $2 = 
= (1 + rr)l-%$$ should be introduced instead of & ; we then obtain from (1.8) the 

following system : 

$*f + h g a*, (1 + n)l-%Zm**m = (1 + n)l-af*n (1.18) 
m=o 

Bv virtue of (1.17) the asymptotic expression (1.11) will hold for the coefficients 

a; = (1 + @-la, * therefore, if (1 + r~)l-~fnf (n = 0, 1, 2, . ..) are bounded, 
the infinite system (1.18) is quasi-completely regular. The asymptotic expression for 

8, at CC < 1 is hence worsened and takes the form S, = 0 (n-a In n). Therefore, 

the method of truncation can be applied to solve the infinite systems (1.8) or (1.18), 

which is evidently equivalent to the following approximation of the kernel function: 

Ic (x) z : ~~c~i(~) (1.19) 
m=o 

Evaluation of the coefficients a,is an important step in the practical utilization of 

the expounded method of solving (1.1). The formula in (1.3) can turn out to be incon- 
venient. Moreover, the function k (z) might be given in the form of tabulated values. 

These complications could be overcome by involving well developed methods of trigo- 

nometric interpolation (31. In this case the coefficients of the approximation (1.19) are 
expressed by means of a known formula in [3] in terms of discrete values of the function 

k(x). 
The kernel function is often given in the form 

k (4 = f JK(t)UXXtdt 
0 

(1.20) 

If, with increasing t , the density K (t) tends to zero more strongly than is determined 
by the asymptotic expression 

K(t) = + + 0 (t-7, t--*cm (1.21) 

then the function (1.20) will be continuous and to compute the coefficients a,in (1.19) 
the mentioned formulas from the theory of trigonometric fnterpolation can be used by 
first calculating the needed values of the function k (x) by utilizing the Filon method 
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C41, say. 
In case the asymptotic (1.21) holds, the singularity in the function k (z) should be 

isolated, i.e. it should be represented as 

Here,the known integral p] is utilized 
00 

s 
0 

(1.23) 

bet us approximate the continuous part of the function (1.22) in the form (1.19) by 
utilizing trigonometric interpolation formulas [3] to compute the coefficients a,. 

We will have the exnansion __ 
1 

th 0.5mx 
a,= m (1.24). 

for the Fourier coefficients a,of the function (1.23) as a result of using formulas from 

(1.3). 
In case m = 0 the result should be multiplied by 2-‘/a. The series entering here can 

be expressed in terms of known special functions. However, because of its quite rapid 
convergence, there is no need for this. A representation of the function (1.23) in the 

form of a series obtained from its integral representation by replacing th t by its expan- 

sion in simple fractions [2] was utilized to obtain (1.24). 

2. On rn error ertimrte. The approximateness of the expounded method of 

solving the integral equation (1.1) occurs because of the approximation (1.19), which is 

equivalent, according to (1.5). to the following : 

fQw/)=2 5 , a,C,+(r)C,+(y) = K*+(s, Y) (2.1) 
m=o 

In other words, the exact integral equations (1.4) are replaced by approximate equa- 

tions. These can be written in the following operator form 

cp + A&J = f, cp* + hK*cp* = f (2.2) 
(here and throughout in Sect.2, we omit the plus and minus signs on the symbols). 

Considering them to be given in some Banach space, we obtain the error estimate [5] 

cp- ‘p* lle7 (1 - 4mP*ll &ilR4*ll~<q<1), 6 = (JK-K* 11 (2.3) 

The operator RJ* here inverts the approximate integral equation, i.e. (p* = Ra* f ; 
it is given by the formula 

(p* (x) = f (4 - 2% iii 4dfhG (4 (2.4) 
m=o 

where the coefficients qrn are found from the following system of equations : 

(2.5) 

obtained by truncation of the system (1.8). 
Let us estimate the norm of the operators in (2.3). Let (2.2) be given in L,. Then 
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(2.6) 
00 m=N+l m=N+l 

Therefore, the formula 
co N 

a2]4= 2 am2=K2- 2 am2 
m=N+l m=o 

can be used to evaluate 8 . 

(2.7) 

The interval of integration was extended to obtain the estimate (2.6). and this could 

strengthen the inequality to two in order that the orthonormality of c, (2) could be 

used. Proceeding analogously further, and drawing upon the Cauchy-Buniakowski inequa- 

lity where necessary, we obtain 

IIRA*fII = ))cP*(IGIJf(I+ WI (ii %2%a2)“’ 
m=o 

Furthermore, calculating cp,by Cramer’s rule, and estimating the determinant in the 
numerator according to Hadamard while taking account of the obvious estimates 

k=o k=o 

$ bjk2 < 5 bik2 = i I2ms$f ( dz = 2 (2.8) 
k=o k=o 0 

we obtain N 

2lhl 
ItR~*II~’ + JAI + fi A,)“’ (Ak = 1 + 2hak f 2h2ak2) (2.9) 

k k=o 

Here A is the determinant of the system (2.5). 
If the kernel of (1.1) is a continuous function, the integral equation (2.2) can be consi- 

dered in the space of continuous functions. In this case we can estimate the quantity 
N 

max k (5) - (0 d 2 d 2) 
m=o 

and thereby the norm of the operator 
N 

IIK-_*(I= max 
o<r, V<l 

/W+N- 2 c,G&+y)+W--y)- 
m=o 

Thus, in the case under consideration 26, can be taken as 6 in (2.3). In this case we 

have the estimate 

(2.10) 

obtained by analogous means for the norm of the operator RX* in the place of (2.9). 

Hence, besides (2.8) it should still be taken into account that 

1 

i,f @)Zdd\I maxf(412d~=llfl12 (0 d 2 d 1) 
i 

Finally, there is often the case when k (x) is not a continuous function but possesses 
the property 

(2.11) 
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Then, as before, Eqs. (2.2) can be considered in the space of continuous functions [5]. 
In this case 

ljl( - K*: ii < max ) 5 K (5, y) dy - 2 i amCm (2) $ C, (y) dy 1 = 6 (2.12) 
0 I. x :: 1 ,, m= 0 0 

and the estimate (X.10) is valid for the norm of the operator (1 HA* 11 . 
It was assumed above that k is not an eigennumber of the first equation of (2.2) and 

the determinant A of the system (2.5) is nonzero. In principle, this latter can always be 
achieved by diminishing the norm of the operator Ilk’ - K* I! because of increasing 

N. In this connection it is useful to note that when h > 0 and a,,, 13 0 (m = 0, 1, 
2 . ..). A =& 0 for any N Indeed, if A =T 0, then this is equivalent to the equation 

t ‘p” (5) + h 3 K* (X, Y) ‘p’ (Y) dy = 0 (2.13) 
0 

having no trivial solution q* (x) =+ 0. But this is impossible since we obtain, multiply- 
ing (2.13) scalarly by ‘p* (5) 

II cp* II2 + 31 tcp*, K*cF*) = 0 
where (ye*, K* cp*) > 0 because of (2.1) and a,,, > 0. Therefore, A # 0 
for any fl including N = co. This latter means that for a, > 0 the integral equa- 

tions (1.4) can have only negative eigenvalues. 

8, Finite lnfarval. Some extenriont. Everything expounded above goes 
over entirely into integral equations of the form 

~(~)+~~~[k,(z-Y)+k,(r+Y)lgl(Y)dy=f(r) 

(3.1) 

(kj (5) = kj (- I), i = 1,2) 

The method elucidated for the approximate solution of (1.1) is also applicable to 

equations of the form 

(1’ (x) f- hp (2) i Ik, (32 - y) -t h-2 (z + YJl5 (!I) 9 (!I> 4l = f (4 (3.2) 
-1 

(kj (Z) = kj (- I); /’ = 1,2; [’ (5) =-_ p (-- I), : (5) = 5 (-- 5)) 

However,(l. 9) for computation of the coefficients of the appropriate infinite system 

is hence complicated. 
As will be illustrated below, in solving certain contact problems situations will be 

encountered when the expansion (1.3) of the function k (x) is known in the interval 

(&2, 2) while Eq. (1.1) is given in the two intervals (---a, -p) and (p, a) 

In this case we shall have the following equations for the even and odd versions of the 
problem 

where the kernels are defined by the previous formulas (1.5) and (1.6). and the solutions 
by (1.7) and the infinite systems (1.8) or (1.18). but hence 
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As above, it can be shown that the corresponding infinite systems will be completely 

regular if h (a + P)“sK & 1 - E. Their quasi-complete regularity for any h is proved 

analogously. 
Everything above relative to (3.3) goes over entirely to an analogous equation with a 

sum-difference kernel. 

It was assumed everywhere above that the kernel function is even. This constraint ca’ 
be avoided if the kernel function is expanded in series of the form 

k (x) = + 2 al,,eimrrs’2, a, = + i k (x) eimnx’? (3.6) 
ln=--co -2 

However, the computational algorithm becomes somewhat complicated because of the 
need to operate with complex numbers. 

A more substantial constraint is the requirement that the integral equation be an equa- 
tion of the second kind. In pure form the elucidated method does not evidently go over 
to equations of the first kind. It is true that a certain modification has already been 
utilized in [6] to solve an integral equation of the first kind with a difference kernel. 

However, it apparently turned out to be only slightly effective. It seems to us that it is 

expedient to utilize a method based on isolating the singularities in the kernel, particu- 

larly the method of orthogonal polynomials [1], in the case of integral equations of the 
first kind. 

4. Semi-lnfinfte and infinite intervrl8. Let us examine the equation 

(r(I)+h~k(x--y)[~(y)dy=f(x) (O,(z< m) (4.1) 
d 

As is known [7], the Fourier transformation K (r) of the kernel function k (x) plays 
an important part in the solution of the integral equations (4.1). where 

k (x) = .& T K (t) c-i”‘dt 
. . (4.2) 

-cc 

Let us reduce (4.1) to an infinite system. To this end, let us construct the solution in 
the form of a series in Laguerre polynomials 

‘p (5) = 2e-” jj (Pm& (2X) (4.3) 
m=o 

Let us substitute (4.3) into (4. l), after which we integrate both sides of the equation 

in the interval (0, OCR) with weight e-rl;, (2x). Hence, we will have in place of (4.1) 

‘Dn 1’ h g.,-,V, = f, ( f, = Tee7 (5) L, (2s) dx) (4.4b 
It turns out that 

57 . 
0 0 

’ @;;) L, (2s) I.,,, (2~) dxdy = + , 
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This last formula is obtained as a result of utilizing the representation (4.2) and for- 
mula 7.414(6) from @I. 

Therefore, the integral equation (4.1) will result in its discrete analog (4.4) [7], for 

which it will sometimes be simpler to obtain an exact solution than for the initial equa- 

tion. However, basic here is the fact that the infinite system (4.4)is more convenient for 

an approximate solution. And even more so since (4.5) can be reduced to a form more 
convenient for calculations. To this end, let us first consider the case when k (x) = 
= k (-x). Then we have in place of (4.2) 

K (t) = 2 f k(x) cos xtdx, k(x) = ;rK(t)cosxtdt (4.6) 
0 

i. e. K (t) is a real even function, and this permits reduction of the integration in (4.5) 

to a semi-infinite interval 
(- i)k ‘R 

\ 
K(t) Ii + il)‘k + (1 - il)‘k] dl 

ah. = - 
(1 + t’pl 

= a-k (4.7) 
II 

;, 

The substitution t = (r” - I)‘/2 and utilization of formula 8.440 from [2] for the 

Chebyshev polynomial of the first kind T, (z) lead to the following result : 
1 

nak = 
\ K (I/P - 1) s = [K (tg 0) cos 2kOdtl 

(- vk -I ; 

NOW, let the kernel be skew symmetric, i. e. k (x) = k (--5). Then 
(4.9) 

K(t) = iK* (t), K* (t) = 2 r k(x) s’n xtdx, k(x) = $7 K” (t) sinxtdt 
0 

i.e. K* (t) is a real odd function and we have instead of (4.8) 

P - 1) [/zk_I (5) dt = \ K* (tg 0) sin 2kOdO 
0 

(a” = 0, ak = - a -k ) (4.10) 

Here U, (z) is a Chebyshev polynomial of the second kind. 
In the general case, the function k (x) ln (4.1) must be separated into even and odd 

components, and to use (4.8) for the even and (4.10) for the odd components in the com- 
putation of the coefficients of the infinite system (4.4). 

By such means the integral equation 

Nr)+&c( x - Y) + kr (z + Y)I ‘p (Y) dy = f (z) (4.11) 
0 

is reduced to the infinite system o3 

9% + h z (%a-m + &Lz) Ip, = f, (4.12) 
f?B=O 

As before,(4.5) or (4,8),(4.10) are hence valid for calculation of the coefficients uk 
corresponding to the difference kernel k (X - . q), and for a(#’ corresponding to the sum 

kernel kl (x + y) the following formulas can be obtained analogously: 
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ak(l) _ (-J)’ 5 K1 (t) (1 - it)’ dt, 

(1 + it)k+) _ 
k = 0, I1 2, . . . 

(4.13) 

C2 - i)U2k+1 (z) dz = 1 K1” (tg 0) sin (2k + 2) 0de 
0 

The second formula in (4.13) is valid for the even kernel function k, (z), where K,(t) 

is its cosine transform, and thethird for the odd function k, (z), where K,* (t) is its sine 
transform. 

An equation given in an infinite interval (4.14) 

reduces to the particular case of integrating (4.11) if its right side and its solution are 

separated into even and odd parts just as was done for (1.1). 
In elasticity theory problems the right-hand sides of the integral equations are some* 

times given in the form of their cosine or sine transforms, i.e. 

f (2) = -$r F+ (t) cos rtdt, f(z) =-$[F-(t)sinrtdt (4.15) 
0 0 

In that case, the trigonometric functions in (4.15) should be replaced by corresponding 

combinations of exponential functions to evaluate the coefficients fP defined by the for- 
mula from (4.4). Then, by using the same methods as in the evaluation of the coeffici- 

ents akr we obtain (4.16) 

The first formula here corresponds to the first Integral representation (3..15), and the 
second, to the second representation. 

Now let us elucidate the regularity condition for the obtained infinite systems (4.4) 
and (4.12). We shall hence consider the conditions 

i I+I=A<w, 5 Iak(‘)I=Ar< 00 (4.17) 
k=-co k=O 

satisfied. 
By substituting m - n = k and m + n -= 1 it is then not difficult to estimate 

the corresponding sums, and to obtain the following complete regularity conditions : 

hA<l-&, h(A +A&<l--e (4.18) 

for the infinite systems (4.4) and (4.12). respectively. 
Moreover, it is shown just as easily that the infinite system corresponding to the inte- 
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gral equation (4.11) for k (x) 3 0 ( sum kernel) is quasi-completely regular for any J,. 
The method of truncation can be used for an approximate solution of the obtained 

infinite systems (4.4) and (4.12), and also for Eqs. (4. l), (4.11). The sufficient conditions 

(4.18) mentioned here for its application can turn out to be burdensome. In this case, it 
is necessary to turn to [8], where necessary and sufficient conditions are mentioned for 

the applicability of the method of truncation (reduction) to systems of the form (4.4). 

Calculation of the coefficients of the infinite systems evidently plays an essential part 

in the practical utilization of the approximate method proposed here for the solution of 

(4.1) and (4.11). The quadratures in (4.4), (4.5). say, can not always be expressed in 
terms of sufficiently simple functions. In such cases, either the first equalities in (4.8). 

(4.10),(4.13),(4.16) should be used, the polynomials there should be replaced by their 

power representations, and the corresponding moments should be computed numerically, 

or the second equalities in the same formulas should be utilized with the application of 
the trigonometric interpolation methods [3], as it was done in the preceding sections. 

6. Generrllzatfon. On equation8 of the flrnt kind. The method 
expounded in Sect. 4 is easily carried over to systems of integral equations of the type 

(4.1) or (4.11). The formulas mentioned there for the computation of the coefficients 
of the infinite systems remain valid even in this case. 

Now, let us consider equations of more general type, which we write, in application of 

the sum kernel 

‘P(“)+&(z)k(z +~)o(y)cp(y)&/=f(z) (5.1) 
0 

The functions here may be complex-valued. If the solution is constructed by means 

of (4.4), but with complex coefficients (Pi, we arrive at the following infinite system : 

’ (‘) 
0-l (I/) 

L, (24 L, (2~) dxdy 

(5.2) 

The previous formula contained in (4.4) is valid for the coefficients f,,. . As will be 

shown below, in specific cases the formula for d,, can be simplified suustantially. 

Everything that has been elucidated in Sect. 4 can be carried over formally to equa- 
tions of the first kind. The corresponding infinite systems will hence not contain the 
isolated coefficient rp,explicitly, and there will be no h. The previous formulas are 

valid for the computation of the coefficients of the infinite systems. However, a disad- 
vantage of the solution in the form (4.3) is that the singularity at x = 0’ is not extracted. 

In many problems of elasticity theory and mathematical physics the solutions of the equa- 

tions co 

c . k(x---)cp(y)dy =f (4 (5.3) 

are unbounded for x = 0. 
0 

A method is indicated below of how to reduce (5.3) to the infinite system (4.4) and 
at the same time to extract the singularity in the solution at II: = 0. kt us consider 

the kernel function to be even, i.e. the representation (4.7) to hold and 

K (t) = * 11 + 0 (t-i)], t -+ w (- ‘i? < CL < l/2) (5.4) 

Utilizing the integral for the Macdonald function @] 
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K,(l4) 
00 

= I- wz - l+) s cm stat 

lXll* 2” v/n o (1 + ty’rg-p 
(5.5) 

let us represent the kernel of Eq. (5.3) as 

k (x) = 
2wql4) 

vzr P/z - l!J I 2 I h + f p b (0 - (1 + &, ] cos ma (5.6) 
” 

By virtue of the asymptotic expression (5.4), the integral component is a COntinUOUS 

function. Now, if the spectral relationship [9, l] 

cc’* (2Y) @J = chcz32x) (5.7) 

is taken into account, then in conformity with the method of orthogonal polynomials p], 

the solution of (5.3) should be constructed in the form of the series 

c0 f? w-2& 2 _$_ p-‘/ (.Jx) (am = l- cm +J + “4 ) (5.8) 
ml=0 * 

For the coefficients cpm,we obtain the infinite system (4.4) in which we should set 

03 

r,_+i g& f (z) LY (2x) dr (5.9) 

ak _ (--ijk M 
U n c K (t) - c1 +&‘:.-p i[&jk (i +;;y,z 1 ‘k = u-k 

-cc 

1 
7: 

‘k s r- 

--= K(\/r”-1) 
2 (-I)” o 

(k=1,2,3,.. 

Just as above, the formula for f, can be reduced to a form analogous to (4.16). 

0. Illurtrr~fon~. Shtaerman [10]showed that the plane contact problem of 

elasticity theory,taking account of the surface structure of the bodies in contact, can be 
reduced to the integral equation 

n & cp (Y) dy = f (4, cp (4 = P (W (6.1) 

Here p (x) is the contact stress under the stamp, 2~ the length of the contact portion, 
c the Shtaerman constant, f (5) a function determining the stamp configuration to the 
accuracy of a constant. A mixed problem of heat conduction reduces to this same equa- 
tion nl]. 

In application to (6.1). the coefficients Gof the infinite system (1.8) have the form 

a, = 2 (ma)-* [Si (mn) + n /2] (m=1,2,3,...), ao= 1/2(i-ln2) 

where Si (x) is the sine integral. As is seen, condition (1.11) is satisfied in the case 
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under consideration, and therefore, the infinite system (1.8) is quasi-completely regular 
for any C. It is easy to elucidate that it is completely regular for c < 1.5 if (1.10) is 
taken into account and also 

K&i /lnf/ZdzL2.188 

To confirm the efficiency of the proposed method of solving the integral equations, 

appropriate calculations were carried out in application to the case of impression of a 
stamp with a flat base, i.e. when f (5) = B in (6.1). The constant B is found from the 
equilibrium condition of the stamp. It turns out that the contact stresses at c = 0.1 differ 

only in the third digit in all approximations starting with IV = 1 at all points of the 
interval, while at c = 1 the difference is one in the second digit starting with N = 3. 

Analogous calculations were performed also on the basis of the method proposed in (lo]. 

as well as the method mentioned in the last section in 021. It turns out that they are 

not as good as that proposed herein in either rapidity of convergence, or in quantity of 

calculations. 

The error was also computed by means of (2.3), (2.7) and(2.9). as well as (2.10) and 

(2.12). In this case the kernel of the equation satisfies condition (2.11). It turns out 
that these formulas, in application to (6.1). yield an error with a high accumulation. 

The problem of impression of a stamp into the endface of an infinite strip was consid- 

ered in 1131. If the mentioned problem is solved taking account of the surface structure 
of the bodies in contact in the Shtaerman formulation PO], we arrive at the equation 

(p(z)+ -&- f ln/ctg a(z4r) ((p(y)dy=f(s). cp (4 = P (4, ,.=2_. 
1 

(6.2) 

--I 

Here 21 is the width of the strip. The remaining symbols are the same as in the pre- 
ceding problem. 

The integral equation (6.2) is a particular case (6 = 0) of Eq. (3.3). According to 

1.442 of @I, we have the expansion 

and therefore the coefficients a, in the case under consideration are determined by. the 
simple formulas 2 

Blr = 0 (h = 0 i ” . ..) 9 .a, TV..+1 zp , 2k + 1 
(k=O, 1, ?, .) (6.3) 

Therefore, condition (1.11) is also satisfied here, and therefore, the infinite systems 
(1.8) corresponding to (6.2), whose elements are defined by (6.3) and (3.5) at 6 = 0, 

are quasi-completely regular for any c. The condition of complete regularity is easily 

obtained also if it is taken into account that 

I&4$ I lt2 

p=‘o (2k + 1)’ = 3- 

As has been shown in 1143, problems of the torsion of an elastic half-space with a 

spherical inclusion by a stamp are reduced to the following integral equations: 
n 

cp (s) - $1 cp (t) [V (t - s) - 11 (t + s)l dl = f W (a0 < X 5: n) 

Q 



On integral equations of the theory of elasticity 587 

T (4 - + s”v (t) [q (t - 4 -- tl (t + 41 dt = f (4 (0 c x s a,) 

0 
(6.4) 

rl(u) = 5 cos (n + l/2) u 

r=_Jo exp 12 (n + 5) PO] + 1 
(0 s u s 2x) 

Here cp (s). are the required functions in terms of which the stresses and displacements 
of the half-space are expressed, f (s) are given functions (to the accuracy of constants) 

for which there are expressions herein, ao, PO are parameters connected with the stamp 
radius b, with the radius of the spherical inclusion p and with the distance I between 

the center of this latter and the surface of the half-space, by the dependencies 

1 = P ch Pot 1 ctg lfZ a, = bcth PO 

The first equation from (6.4) corresponds to the case when there are no displacements 

on the surface of the spherical inclusion (absolutely rigid inclusion), and the second equa- 

tion corresponds to the case of a spherical cavity on whose surface there are no stresses. 

In order to reduce the equations mentioned to the Eqs. (3.4). the substitution s = no, 

t = w must be made. Then the first equation will correspond to the odd case, i.e. the 
minus sign in (3.4), where a = 1, 6.= a, / 3t and the second equation to the even case 

in which p = 0, a = a0 / n. The infinite system (1.8) with minus sign will correspond 

to the first integral equation of (6.4) ; h = - 2, and the coefficients fn, b, should be 
calculated by means of (3.5) setting a = 1, fl = a, / n. In conformity with the expan- 

sion from (6.4), the simple formulas 

d - 0, Pk - a2ptj = Pw [W + 1) PO] + W1 (k-0, 1, 2, . . .) (6.5) 

are valid for the coefficients am . 

The infinite system (1.8) with plus sign will correspond to the second integral equa- 

tion of (6.4), where as for the first equation h = - 2 , and (6.5) are valid. As before, 
the coefficients fnr b, should be calculated by means of (3.5). but now 6 = 6, a = 
= a,/n. 

It has been shown in the monograph 1151 that such elasticity theory problems as the 
impression of a circular stamp into an elastic layer, as well as the torsion of this layer 

by a circular stamp, the impression of an annular stamp into an elastic half-space, and 
also a number of mixed problems for the torsion of a truncated sphere are reduced to 

(1.4). 
let us present several illustrations of the equations in a semi-infinite interval. It has 

been shown in [IS] that the problem of impression of a semi-infinite stamp taking account 
of the surface structure can be reduced to the equation 

W+hYKo(, r - Y I 1 cp (Y) dy = f (5) 03.6) 
0 

Taking account of the integral representation for the Macdonald function (5.5), we 
find, that in this case K (t) = x (1 + P)-‘~~. Substituting this expression into (4.5) and 
utilizing 8.381(l) from yZ], we obtain 

2 
a =1-_=a_k k 

(k=O, 1,2, . . .) 

Therefore, the integral equation (6.6) reduces to the infinite system (4.4) for whose 
coefficients the simple formula (6.7) is valid. It is completely regular if h < 0.25 since 
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in the case under consideration 

A problem from electromagnetic wave theory [17] also reduces to the integral equa- 

tion (6.6). An exact solution of (6.6) was obtained in this paper, which it is difficult to 

complete numerically. An approximate method was mentioned in p8] for the solution 

of the same equation. This method is substantially equivalent to truncating the infinite 

system obtained here for it, 

The problem of impression of a circular stamp in an elastic half-space taking account 
of cohesion is reduced in p9] to the integral equation 

cp (2) + $ r sinx(:; y) cp CY) dY = f (4 
0 

In this case evidently 
co 

k(z)= .+=?-~ K (t) cos xtdt, 

0 

(6.8) 

Taking this latter into account, we find on the basis of (4.8) 

ak = (- 1)” (2krt-1 sin (xk / 2) (h‘=3,1,?,. .) (6.9) 

Therefore, the integral equation (6.8) can be reduced to the infinite system (4.4) 
whose coefficients are determined by the simple formula (6.9). 

It has been shown in PO] that the fundamental plane problems of elasticity theory 
for simply-connected bodies can be reduced to the equation 

M 

(P W + h’s k (z + Y) Y cp (Y) dY = f (5) (6.10) 
0 

which is a particular case (p = 1, o = Y) of (5.1). Thus (6.10) can be reduced to the 

infinite system (5.2). The formula mentioned there for computation of its coefficients 
simplifies substantially in the case under consideration. Indeed, if it is taken into account 
that p] Lm (Y) = L,,’ (Y) - &+I1 (Y) 

as well as that not the kernel itself is given in (6.10) @O], but its Fourier transform ‘K (t), 
i.e. if (4.2) is taken into account, then we may write 

d nm = (m + 1) c,,,, - mcll ,m_l, (-I)k O3 K(t) l-it k 

%,nl= ~rltnl a -2n k c 
-& 

(1 + it)s 1 + it 1 dt i ’ (6.11) 

Here we should take c,,- 1 = 0. Moreover, it should be taken into account that for- 

mula 7.414( 8) of y2] was utilized in obtaining the second formula in (6.11). The for- 
mula obtained for ak when the integral it contains is not expressed in terms of simple 

functions can be subjected to further simplification based on the representations 

K (t) = K+ (t) + K- (t), 2Kf (t) = K (t) f K (- t) 

Then, proceeding exactly as in the case of the integral (4.5). we obtain 
ak = Uhf + ak 

z ag 
1 x/z 

2~' 
s 
R+(vTL--l) 

TT,i;+a (t) fh 

c 
v1-_ = o" K+ (tg 0) cos (3 cos (2k + 3) WI 

II 
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1 x I2 

_-~- K- ( VT-~ - I) ~l/,~+~ (z) dz = K- (tg 0) cos 0 sin (2k + 3) BdB 

The problem of the bending of a semi-infinite plate situated on an elastic half-space 

was reduced in [9] to the integral equation 
00 

c i 1 O3 c e-itSds [ Ko ( 1 z - y I) + pG (5 - Y)I Cp (Y) hi = f (4 G (4 = x (1 + a2 
6 22 

Utilizing the method described above for reducing an equation of the first kind to 

infinite systems based on extracting the singularities in the kernel, we arrive at the infi- 

nite system (4.4). where the coefficients of this system have the simple form 

nak = 12 (I-4k2)-’ (9-4 k2)-’ 

Calculations performed in application to this problem showed the high efficiency of 

the proposed method. These materials, as well as both a more detailed examination of 
other problems such as those mentioned above, and new problems, will be published later. 
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A system of homogeneous solutions is constructed for the axisymmetric mixed problem 
of elasticity theory for an infinite cylinder, one part of whose surface is stress-free, while 

the other is under sliding boundary conditions. Asymptotic formulas governing the stress 
concentration and the shape of the free surface at the line of boundary condition sepa- 

ration are obtained. The system can be utilized to satisfy conditions on the endfaces of 

a semi-infinite or finite cylinder. 

Three contact problems of a semi-infinite cylinder partially compressed without fric- 

tion by an absolutely rigid collar. The conditions on the side surface are hence satisfied 

exactly. The coefficients in the series of homogeneous solutions are determined from 

the normal systems of algebraic equations. 

1. Let us consider a system of homogeneous solutions each of which satisfies mixed 
conditions on the surface of cylinder of unit radius 

‘t rZ=u=o for r = 1, 2 > 0 (1.1) 

7 rL = or = 0 for r = 1, 2 < 0 (1.2) 

and has finite elastic stress energy at the line of separation of these conditions at r = ‘l 

0, - 0 (z+l ) for Z-+0, U~O(Z'~) for Z-+ - 0 (1.3) 

(al, an>01 

Let us start with the construction of a subsystem of solutions which increase without 


